Build your own Arduino Starter Kits for the Classroom

A typical student starter kit.

It’s August, and we’re assembling kits for another run of the instrumentation course.  Over time we have come to rely on 328p based microcontroller boards (aka: Arduinos) so I though I would post a list of the parts & materials we use to help others fire up their own classroom. More than a few people have requested this since I posted the UNO based logger tutorial last year.

Before digging in: I should warn you not to reinvent the wheel if you don’t have to: there are lots of premade kits out there. We found that many had parts we simply didn’t need, as the minimal ‘starter kits’ we use are designed to exactly match the lessons in a course focused on environmental monitoring.  We also hand out extra parts for some tutorials as needed through the course, and the students receive a second project box when they start building their stand-alone  projects. Cave Pearl data loggers Even if you want that level customization, it might worth looking at some basic electronic component kits, and building your classroom set on top of those. The DIY approach will save money, but you pay for it with time.  Most of the eBay parts shown here took about two weeks to ship, with some stragglers taking almost a month to arrive.

You will need more than an Arduino and a few components  to set up a classroom, so I am including tools & other miscellaneous bits of hardware that we use in the lab. I would not describe any of these as high quality equipment, but they are ‘good enough’ to get things rolling on a modest budget.  Even if you go with eBay stuff,  you are doing great if you can run a course where students build ‘real world’ deployable prototypes for $100 a seat, once you include the tools and other bits.

Components for the UNO based Datalogger:

UNO Data logger Kit: $25-50 / seat
UNO_100pxw Arduino UNO R3
The real thing, and tough as nails. All of my old UNO R1 boards are still operational despite years of abuse. If you can’t afford the real thing due to budget limitations, then at least donate a few bucks to help them keep the open source project going.
UnoClone_100pxw UNO clone (incl. USB cable)
If you have to go this route, I suggest that you choose exact copy ones with ATmega16U2 or 8U2 UARTs to avoid problems with the IDE. If you can deal with the driver issues, there are clones for as little $3 with alternate UART chips like the CH340.
Transparent Experimental Platform Base-plate
Last year we made our own base plates with M3 risers and Plastruct Styrene sheets. But these acrylic boards save time. Check left/right side orientations before buying..
MiniBreadboard_100pxw Mini Solderless Breadboard 400 Tie-points
Get two per student, in case they need to expand their projects.
JumperWires_100pxw 65pcs Jumper Wire kit
Need at least one of these for every two students.
40p10cmdupont 40wire Dupont 10cm Jumper cable
An alternative to loose jumpers wires, and they keep the kits looking tidy at the beginning of the term. Having students make longer or shorter jumper wires by hand when they need them, gives them practice with the crimping tool.
JumperWire22AWG_100pxw 22AWG Solid Hook up Wire (25 Feet/color)
One box will cover the entire class and they should know how to cut and strip wires properly. Don’t bother with pre-cut jumper wire sets as the longer lengths are never the right size..
SDmodule Micro SD Card Memory Shield Module
And don’t forget to buy μSD cards to go with them. Test any used ones to make sure they are ok.
RTC_100pxw DS3231 & AT24C32 IIC RTC Clock Module
I have a page describing these RTC board in some detail here. You will also need a CR2032 3v Lithium coin cell backup battery, after you remove the charging circuit resistor.
Keyes3ColorRGBLED_100pxw Keyes Ky-009 3-Colour Rgb Smd Led Module
There is nothing special about this common cathode 5050 LED, but it’s easy to remove & re-insert without bending the pins, and the low profile helps it fit in the kit boxes.
Tweezers_100pxw Vetus ESD-15 bent tip tweezers
Make sure they have the rounded shaped ends that come to a sharp tip
ICbox_100pxw 10 Compartment Small Part Storage Case
To keep all the led’s, resistors, etc. from rolling around loose inside the larger clip boxes. Get ones where the section walls can be removed to make room for longer parts.
SteriliteBox Sterilite 1961 – Small Clip Box
Expensive, but they survive in a student back pack. You can find $1 clip box alternatives at your local bargain store.
CheapMultimeter_100pxw Basic Digitial Multimeter DT-830D
We have better meters in the lab (like the EX330) but at this price you don’t have to worry about students loosing or breaking them. Have replacement 9v batteries on hand, as people frequently forget to turn them off. Expect 1-2% error on readings.
eyeloupe Folding Magnifier (5x)
Useful for inspecting solder connections.
$0.55 ea.
Note: The stuff above this line goes into every UNO logger kit, but I am adding a few optional things to this list that might be appropriate for other courses:
MinimalKit_100pxw Minimal electronic components kit
Even though we don’t use them, I wanted to put this in here as an example of a minimum component package that could be a starting point for your custom kits.
ElecfansKit Slightly less minimal component kit
Another one that’s almost tempting. Search eBay for ‘Electronics starter kit for Arduino’ and you find oodles of these. If you are only making a small number of kits these might be the way to go. But if you are making six or more, check the basic components list below, as most of the parts in these packages are pennies each if you buy them separately.
6xAAbattery_100pxw 6xAA Battery Holder Box for Arduino
These will power an UNO for about 40 hours of continuous stand alone operation. You can really stretch that out with sleep & other tricks.
PWradapters_100pxw 9 VDC 1000mA regulated power adapter
5.5mm/2.1mm barrel jack, positive tip. Expect these cheap ones to be noisy as heck compared to the ones from Adafruit. We run most of the UNO based lessons tethered to a USB cable, so these rarely get used.
LongBreadboard_100pxw MB-102 Solderless Breadboard 830 Tie Points
They don’t go into the student kits, it’s a good idea to have a few of these longer breadboards around.
TranspShield_100pxw Arduino UNO R3 Transparent Case
An alternative to the flat platform approach we use  would be to try these in combination with a breadboard shield
BreadboardShield_100pxw Mini Breadboard Prototype Shield
With a little creativity you could squeeze low profile components for the data logger onto this if you find an SD card adapter, and an RTC with perpendicular pins.

Basic Electronic Components:

Most electronic components can be had for pennies if you buy them in quantity. And the difference between low end parts and name brand stuff can be more than an order of magnitude.  That doesn’t mean that off the shelf kits are a bad thing, it just means that what you are really paying for is someone’s time selecting and packaging it.  That still might be the better option for you if you can afford it.

Basic Components:
StanleyBins Stanley Removable 10 Compartment Organizer
Before you buy a bunch of tiny little parts, you need some way to organize them. I usually put the items into 3″x 5″ or 4″x 6″ bags, which then go into these compartments.  Pink 4Mil Anti-static Poly Bags come in all sizes, and work well for this. Being able to remove the section boxes from these organizers to lay out specific parts for a tutorial also comes in handy.  See: Organizer Bin Storage Unit See: Tool Storage
StanleyShallowOrg Stanley Shallow Organizer, 25 Compartment
This organizer is better for really small components & IC’s that you only have a few of, but you still need to bag them or they get jumbled.
AdafruitWire_100pxw 26AWG Silicone Cover Stranded-Core Wire – 2m
This high strand count wire from Adafruit is the nicest stuff you are ever going to work with, and is my favorite after trying just about everything else on the market. Simply fold & cut those pre-cut 2m lengths four times and you end up with 12cm lengths which are perfect for including in kits. [Colors:Red,Black,White,Yellow,Green,Blue,Grey,Orange]
CheapWire_100pxw 100Ft / 30.5M 28AWG Silicone Wire 3KV
This is thinner seven-strand wire,  so it will not stand up to frequent bending like the Adafruit 26awg. If you buy two lots at a time they combine shipping bringing the total to ~$15/60m. I use this stuff is to add Pink, Brown & Purple to the color set. This makes it worth the hour you are going to spend cutting & processing each of those long bundles from Taiwan. Of course, many US vendors also send you loose piles of spaghetti like that to deal with.
Hshrinkspool_100pxw 1/16″ 2:1 Clear Heat Shrink (MIL-I-23053/2, class 2)
Unlike normal heat shrink, mil-spec is very thick and holds its shape after cooling; making it easier to route cables in a housing. Watch for eBay vendors that advertise mil-spec, and send you the thinner cheap stuff.   I think of 1/16″(=1.5mm) heat shrink as “1-wire sized”, 2mm = “2-wire size” and 1/8″(=3mm) as “3-wire size” when working with 26awg.
I add male DuPont crimps & a bit of heat shrink to thin lead components to make the breadboard friendly

Resistors: Lead diameter makes a resistor breadboard friendly or not. You generally want 0.6 mm not 0.4mm leads, though it is inevitable that you will end up buying a few cheap multipacks with the thin leads. ( Note: You can add male DuPont crimp ends & a bit of heat shrink to components with thin leads to make them breadboard friendly : see inset photo) Brand-names like Vishay, Xicon, KOA Speer are usually very good, but you pay 2-5 cents each for them. Ironically, the cheap old carbon resistors often tend to have thick steel leads while the better brands have softer copper leads which bend more easily. I find 1/4 watt to be the most practical size and 1/2W metfilms are physically about the same size as 1/4W carbons. Beige-background carbon resistors seem to be much easier to read than blue-background metals, but if you need 1% tolerances, you won’t have much choice. 1/8watt metfilms are very tiny, which can be helpful if you need to put a resistor into a small place, like between two pins on a breakout board.

MetfilmResisorSet1 64 values 1-10MΩ 1/4W Metal Film Resistors Assortment
Crappy thin leads, but a huge range of values to have on hand at the beginning of a class.
IndMetfilms MetFilm Resistor 1/4W 0.25W ±1% [Various Sizes]
100 pc of specific sizes with thin leads. We usually put five to ten of 330Ω, 1K, 4.7K & 10K in each kit, but you can tune this to your curriculum and/or hand out other specific sizes at the beginning of each class.
HalfwattCarbons 1/2W Carbon Film Assortment (30value x10pc 1-3MΩ)
Sometimes the 1/2 watt size is easier for beginners to handle. It also helps to have “exercise specific” resistor values look physically different from the other resistors in the kit. These still have thin leads though.
carbons Carbon Resistor 1/4W 0.25W 5% [Various Sizes]
Just a typical eBay search link to give you an idea what’s available. Usually these carbons have nicer thicker leads but the quality varies. Check for free shipping.
Components: Most hobby market parts distributors have “Assortment Kits” for commonly used components and its a good idea to just buy a selection those when you are starting out. It might be a while before you actually dig into that mixed bag of capacitors for the odd value you need for that circuit you just found on the internet, but when it happens you will be glad you spend that $1 six months ago. I’m going to list several from Electrodragon as examples, but there is nothing special about them and you can often find a very similar set on eBay for significantly less. A common problem with all the overseas suppliers is that it usually takes 3-4 weeks for stuff to arrive. So if you realize that you need something quickly, go to Sparkfun/Adafruit/Pololu/Amazon etc. My rule of thumb with dodgy flea markets like Dealextreme, AliExpress, etc. is: “If this order never arrives, how unhappy would I be about that?” If the answer to that question is “Quite a bit” then you should probably order that part from a reputable vendor.  More than 95% of the things I order from eBay do arrive…eventually…
LED's 5mm LED Light Diffused Assorted (5 Kinds*20PCs)
Having the colored plastic makes it easier for students to identify which LED is which. [red, green, yellow, blue, white]
RGBled10mm LED diffused RGB 10MM Common cathode
Having the RGB led a different physical size from the one-color LEDs makes it easier to identify them in the kit. Common cathode means you can use one limit resistor on the ground line. You can use a coin cell to identify which leg is which color.
mixedcaps Ceramic Capacitor Kit (30 Kinds x 10 PCs) $1.90/300pc
cCaps 100PCs Ceramic Capacitor [30pF,10nF,100nF]
The three most common sizes to have on hand are (105)1uF, (104)100nF and (103)10nF. Get 50-100  of each. Most of the time you will be using: 104 (100nF) so get at least 2-3 bags of them as you can never have too many 0.1uF Caps on hand.
EcapAssortment Electrolytic Capacitor Assorted (0.22UF-470UF, 12Kinds)
I rarely use these (unlike the little ceramics which get used all the time) Keep an eye on polarity! And there are other kinds of capacitors out there.
GeneralDiodePack General Diode Pack (8 Kinds)
(1N4148 -25PCs, 1N4007 -25PCs, 1N5819 -10PCs, 1N5399 -10PCs, FR107 -10PCs, FR207 -10PCs, 1N5408 -5PCs, 1N5822 -5PCs)
INDdiodes 50PCs Diode [Individual types]
1N4148 is the standard signal diode so it might be worth ordering those.
1N5817 Shottky’s are also useful to isolate battery banks from each other.
DiodePack_100pxw Common Zener Diode Pack, 0.5|1W, 3.3V-30V
(14 kinds, 5pcs each) Each Zenner has a specific breakdown voltage, so it might be a good idea to wait till you know which ones actually need and order only those specific types.
TransistorPack General Transistor Pack (17 Kinds x 10PCS, Low Power)
Like Zenners, there are many different flavors of transistor out there, and you should figure out which one you need before buying too many of them. So perhaps just order this pack as a backup, and wait till you know which specific ones you need. For example: the 2N2222A is one common NPN BJT that most everyone seems to use, and they are about a penny each.  See: Building a Friendstrument. See: Transistor as a Switch  See:TransistorCalculator. Rule of thumb for using cheap transistors as switches:  make the base current twice the calculated value for the worst-case hfe listed in the data sheet, provided that does not exceed 30mA, which is your maximum digital pin current on an Arduino. I try to keep my maximum Arduino pin currents below ~20mA.
2N7000 2N7000 TO-92 N-Channel Mosfet (200mA max)
These mosfets are like “Transistors for Dummies” and work great as digital switches when connected to 5v Arduino digital pins – and you don’t have to do the calculations for the base currents, etc. So they are much easier for beginners to use although they will set you back a whopping four cents each. Note: A 100K resistor between the gate and ground keeps the fet off by default. These must be on the ground side of the controlled circuit.

Note: The 2n7000 can be used with a 3.3v Arduino to control things like LED’s, but they probably only pass between 30-60mA with signal from those digital pins because the controlling voltage (Vgs) needs to be about 4.5v for the 2n7000 to be fully turned on.   Ideally you want the MAX value for Vgs(threshold) to be lower than 2.4v in the datasheet, or you want to see an RDS(on) quoted for 2.4v, or lower. The Vishay Si2356DS  , Si2312BDS(or Si2333DS /DDS for P-channel)  might be a better choice for 3.3v Arduinos, though you will have to mount them on SOT-23 adapters , and if you willing to do that kind of  soldering it might be worth going to the Si4562DY which gives you N & P channel mosfets in the same package

Rotary pots 10K Linear Rotary Potentiometer 15mm
Also available in other values like 1K These B1k/10k’s can be put right onto a breadboard, though they are also good for soldering lessons and then you are ready for the ever popular LED Bar graph tutorial at
BBorardTrimpot Breadboard trim potentiometer 1 & 10K
These guys are really nice to use on a breadboard as you can turn them with your fingers, however they are more than a buck each. If you can stand using a screwdriver to adjust, the cost of a trimpot goes down to about 20cents each. There are also 3296 Assortment packs of other styles available.
Momentary switches Push Button Momentary Switch (12x12x7.3mm)
15pcs with a selection of different color caps. Cheaper if you get larger quantities. Sometimes there are little bumps on the bottom that you have to snip off to make them breadboard friendly.
LatchingPushButton Latching Push Button Switch DPDT 8x8mm
I prefer these latching push buttons to slide switches because they are less likely to pop out of the breadboard by accident.
HeaderPins 2.54mm 40P Break Away Pin Header [Female/Male]
Get both male and female sets. You frequently need to add male header pins to breakout boards.
doubleheader Double Length 2.54mm M-M Header Pins
Extra long header pins are handy at times, as are the 90 degree lateral pin headers
DupontRibbon 40 pin Dupont wire jumper cables 20CM
M-M, F-F & M-F. Usually you tear off a strip with the specific number of wires you need for a particular situation, like adding a jumper cable to a UART module that did not come with one. Often it’s convenient to buy these cables without the black plastic end caps, but you pay more for that.

Basic Sensors:     

With so many different types of transducers, I can only list a few examples here. And rather than a strict definition, I think of a sensor as ‘basic’ if it’s fairly easy to get the output you are after when you connect it to an Arduino. That can happen for different reasons: (1) Sometimes the raw sensor is electrically simple, such as ‘modulating’ sensors that change their physical properties (like resistance) in the presence of heat, light, etc. and these can easily be turned into a voltage. Some of these sensors are ‘self -generating’, producing a small signal which can be fed directly into the Arduino’s input pins. (2) Others fall into the basic bucket because someone else has put the sensor and some fancy electronics together inside an IC package or onto a cheap breakout board/module, to make connecting to the Arduino easier than it would be with the raw sensor. (3) And other times it’s because someone has released an open source “library” that teaches your Arduino to “talk” to sensors, which might even more electronically complicated than the Arduino itself. (Although those sensors tend to have so many settings to take care of when you start them up, that even with a library they still end up the “Advanced sensor” category.)

Basic Sensors
reedSwitch Magnetic Reed Switch
Perhaps the most fundamental type of sensor is a switch. You can think of push buttons as pressure sensors, and magnetic reeds as proximity sensors. They show up in applications like rain gauges and anemometers because they are robust and draw no current most of the time. Find a good tutorial on pull-up resistors, and de-bouncing is another important issue with switch sensors.
Photocell 5528 Photocell 10KΩ LDR
This light dependent resistor might be the easiest sensor to start your lessons with. Put a fixed 10K resistor in series and read the middle of the voltage divider with a analog pin. That’s it. Add a passive piezo buzzer module and you are ready for the popular Light Theremin exercise.
thermistor NTC Thermistor 10KΩ B=3950 1% tolerance
Thermistors change their resistance with temperature just like LDR’s do with light. So you use the same electrical circuit to read them as the LDRs. The devil though, is in the details. Thermistors are very non linear, so you need to so some fancy calculations to translate the analog readings into an actual temperature. There are lots of great tutorials out there to help with that.
FSresistor Force Sensitive Resistor 0.5″
In this case the resistance changes with applied pressure. In fact there is a whole family of Force / Stretch / Bend sensors like this and they get used for all sorts of things like measuring water level. Unfortunately they are also pretty darned expensive, so sometimes its better for students to make their own FSR sensors instead.
piezo sensors Piezo knock/bump Sensor 27mm
Piezos can generate significant voltages, so they get connected with a shunt resistor to damp things down; protecting the Arduino. Be sure to get the ones with the lead wires already soldered on.
When you move away from raw sensors, there seems to be a bewildering array of ‘breakout boards’ and ‘sensor modules’ for the Arduino and they sell them in mega bundles of twenty, thirty or sixty different pieces. Like the component kits it is probably OK to get one of these when you are starting out; just to play with them and see which ones fit your curriculum. Watch for custom connectors that force you to buy extra cables & interface boards. I actually like the Grove System, and similar systems like the Itead Electronic Bricks, but from a teaching point of view those are better suited to creating ‘snap together’ lessons with younger students. (or no wiring at all if you populate a Multi-sensor Expansion shield) That’s not so good if you want them to become comfortable making their own circuits on a breadboard.
sensor module kit 37 in 1 Sensor Modules Kit
Just an example of one common module set from eBay. So you will have to hunt around for a set that looks interesting to you, and it might be worth an extra buck or two to get one that comes with an organizing case. For some, like the Keyes series, you can find pinout guides and instruction wiki’s There are usually several “How to use it” tutorials for each sensor at and on YouTube.
Once you get a closer look at them, you’ll notice that most of these cheap sensor modules look the same:


That’s because at least 50% of those boards are simply a voltage divider like you would use to read the raw sensor connected to one input of a 5 cent comparator circuit. While a 20 cent trimming pot sets the voltage on the other input:
LM393circuitThese boards take an analog voltage, compare it to a threshold, and then produce a digital on/off output on Dout which you would read on digital input pins on the Arduino. Essentially turning an analog sensor into a kind of switch. This is such a generic circuit, that you could put other resistive sensors on those pins and it would probably work fine.  Look for boards that give you the 4th analog output pin if you want to read the actual sensor value with the ADC.

LDRmodule Photoresistor Sensor Module for Arduino
Here is that same 5528 LDR I listed at the beginning, being sold as a “sensor module”.
TC5000IRpair TCRT5000 Reflective Infrared Emitter&Sensor Pair (Raw) $1.00/10pc
TCR5000module TCRT5000 Reflective IR Switch (module)
Sometimes used for line following/distance sensing in robots.
HR31resistiveHumidity HR31 Analog Resistive Humidity/Temp Sensor (Raw)
You get one combined Humidity/Temp impedance number out of this sensor, which you have to decode to work out the humidity.
H31module HR31 Analog Resistive Humidity Sensor Module
Be careful which one you order. 3pin=On/Off threshold output only & 4pin modules will let you read the analog output of the divider. By now I hope you see the pattern in these cheap sensor module boards. The list goes on forever…
PIRmotionSensor HC-SR501 PIR (Passive Infrared) Motion Sensor
This module has vastly more complicated supporting electronics than the simple comparator boards above, but you use it in essentially the same way. Adjust some trim pots and then look for High/Low output on a digital pin.
capsensor Capacitive touch sensors
Tons of these on eBay, and dirt cheap, but nowhere near as much fun as making a really big capacitive sensor yourself with some flat sheets of aluminum foil and the Arduino capsense library.
In addition to modules, you also run into integrated circuit sensors where more electronics are embedded inside the sensor itself. These can have either analog, or digital output, but the digital output is no longer limited to simple on/off information . Analog sensors are generally easier for beginners to use, since all you have to do is read an ADC pin to get your numbers. The digital sensors have to “talk” the Arduino, and that usually involves including a library at the start of your sketches to handle the low level details of the serial communication protocol. There are far to many to cover here, so I will just leave you with a comparison of two sensors that have nearly identical sensing capability, with one being analog, and the other as digital. Equivalent pairs like this exist for other environmental parameters like pressure, humidity, etc.
TMP36 TMP36 – Analog Temperature Sensor
Unlike a raw thermistor, these sensors have a bunch of circuitry for amplification and signal conditioning so that the output given to the Arduino’s ADC is beautifully linear.
TMP36 DS18B20 – One-Wire Digital Temp Sensor
This ‘one-wire library dependent’ temperature sensor is often the first one people use when they make that transition, and it is one of my personal favorites. Digital sensors come with various serial communication protocols, but in return for the added code complexity you get the ability to hook many sensors to the same ‘bus’ wires, and in the case of the DS18b20, those can be up to 100 meters long.
Making the transition from simple analog to true digital sensors is like earning your merit badge with the Arduino. There is usually a digital version for every different kind of analog sensor at about the same cost, and in some cases the digital version offers tremendous advantages in terms of resolution. But one of the first things you want to know is: Are there good libraries to make this sensor work with an Arduino? While there are plenty of independent coders posting open source libraries to GitHub, suppliers like Adafruit & Sparkfun often release them in conjunction with a cool new sensor, and it’s one of the reasons why people in the Makers movement like them so much. Though I have listed several low end commodity parts here, I still spend a significant amount at those first tier vendors: both to get sensors I can rely on, and to show them some love for all that hard work.


Before the comments fill up with dire ‘You get what you pay for…’ warnings, I’d like to point out that when I’m buying tools for myself, I check three places: Adafruit, Sparkfun, and EEVBlog. If you want quality tools go there and buy what they recommend because they really know their stuff. However in the real world a teacher is lucky if they get $500-1000 to spend on materials for a 10-12 student class.   See: Collins Lab tool video.

Soldering Stations: ~$130 / station
YiHua936b Yihua 936b soldering station
Unlike thin pencil style irons, These guys have enough thermal mass to handle soldering beefy connectors. Get the ones with the switch on the front and the blue metal stands.
Comment: I love my Hakko FX-888D, in fact I wish I just wish that I bought that before working my way through a bunch of crappy soldering irons. However you can buy four of these cheap knock offs for less money, and that really helps the budget if you need enough for a whole classroom. It also helps that these things are big & ugly if you are working in a place were things tend to walk away on their own…
ReplHandle_160pxw Replacement handle for Yihua 936 station
Yes, soldering irons do break if you drop them – especially the cheap ones. This is 5 connector handle is not the same as Hakko 936.  With spare handles this cheap, it’s faster to just change the whole iron when you want to work with a different tip, rather than waiting for everything to cool down, etc.
Tipset_100pxw 12pc Soldering Iron Tip set Hakko 936 (& Yihua)
The ultra thin tip that comes with the 936b is useless.  900M-t-1.2D ‘screwdriver’ and 900M-T-B ‘cone’ are the tips I use  frequently so it might be cheaper buying those individually. Of course these are all fake tips, as real Hakko tips usually cost around $10-15 each, but you will need a good supply of replacements either way.  I’ve been using the  T18-S4 ‘conical sharp’ that came with my Hakko 880 as my default tip two years, and it’s still going strong. Genuine tips usually have laser engraved markings on the sides. Do not buy lead free tips unless you are using lead free solder, as the chemistries do not mix. Remind your students to always re-tin the tips before storage, because once they go dry the tips are ruined.
TipCleaner_160pxw Soldering Iron Tip Cleaning sponge
And you will need some replacement sponges eventually.
400gSolder 400G 0.8mm 60/40 Rosin Core Solder Wire
A large roll like this is for soldering stations that you don’t have to take down at the end of each class. But it should last quite a while.
SolderHolder1_160pxw Solder Wire Holder for large rolls
A holder for the large solder rolls like the one above. There are better looking ones out there a few dollars more..
Solderwire_100pxw 0.6mm 60/40 Rosin Core Solder Wire
I use  0.5-0.6mm wire for things like pin headers and general solder joins. Buy a few per station, as small 50 gram rolls get used up quickly. For really fine work on IC chip legs, it’s also handy to have a roll of 0.3mm around.
SolderWick_100pxw Solder Removing Wick 3mm braided
Get a couple for each soldering station.
NoCleanFluxPaste MG Chemicals 8341-No Clean Flux 10 ml Syringe
Doesn’t make a mess like the $1 options from eBay, easy to pack up & lasts for ages without drying out.
PanaviseJr_160pxw Panavise Jr. – PV-201
This is one of those rare items for which there aren’t any equivalent products on the market – though you could try the attaching a $6 PanaVise 207 Vise Buddy Jr (made of plastic) to a DIY base. Don’t forget the Neoprene Jaw Pads and the Speed Control Handle which add alot to the functionality. As would one of these things.
HelpingHands_64px Third Hand Soldering Stand / Holder
I use these guys to hold wires in place, while a Panavise holds the board I am working on. The alligator clips always fail with time and there are other things that might also do the job. At EMS labs, they make their own with thick wire.
Heaterizer_100pxw Heaterizer XL-3000 Heat Gun
A cheaper option than a full re-work station, but also noisier.
HeatShrinkKit_100pxw Assorted 2:1 Heat Shrink Tubing Kit
You rarely use the larger sizes, but a general assorted size kit like this is good when you are starting out. It is much easier to spot soldering problems if you use CLEAR heat shrink tubing but its not as pretty. Keep a good stock of 1.5 mm, 2mm and 3mm on hand, in fact buying those smaller sizes by the roll might be a good idea.
Glasses_100pxw 3.25 diopter Reading glasses
The cheapest option for close-up soldering work. And get hard shell cases so they can just be tossed into the station kits without scratching.
WireStrippers_100pxw AWG 30-20 Precision Wire Strippers
Hakkos are the gold standard, but these ones from H.Depot are ok. They gave the Ideal T-stripper model 45-121 a good review over at the EMS blog.
CuttingPliers_100pxw #170 Flush Side Shear Cutting Pliers
Again the Hakko CHP-170 would be my first choice, but these work.
Pliers_100pxw Bent Nose Jewelry Pliers
You can find others for a buck if you go hunting, but I like the handles on these.
Baskets_100pxw Plastic Locker Bins with Handles
Reasonably large plastic bins let you pack up the soldering stations after class and put them in storage. Most dollar stores have something like this on hand.
Comment: Even if you teach the course with breadboards, you will need at least one complete solder station for things like adding header pins to your breakout boards. A full set like this will set you back about $130, and but depending on your scheduling, you might get by with one full station for every two or three students. We usually set them up around the perimeter of the classroom.

Other Useful Tools:
CrimpTool_100px SN-01BM Dupont Connector Crimping Tool
If you keep your eyes open, you can find them for less than $20.00. Many prefer the PA-09 crimping tool, but those usually run > $50.00
Make polarized (non reversable) connectors by mixing Male & Female connectors

Make non-reversible  connectors by  combining M&F pins

Comment: Before you get a crimp tool, you have no idea why you would want one. Afterward, you use it almost as often as your soldering iron. Dupont connectors are ubiquitous and lots of electronic components have leads too thin to use on a breadboard, so you end up crimping male DuPont ends onto them just to plug them in. It does take a bit of practice to get the hang of it, but there is no other way to make interconnecting cables this quickly & inexpensively.

DupontMalecrimps_100px Dupont 2.54 Connector Crimp Ends
Be sure to get both Male and Female ends. Buy 2x as many female as male pins.
Terminal Ends Dupont Jumper Plastic Terminal Ends
Get at least 200: 2x, 3x, 4x and 6x plastic covers. I don’t use the 1x ends any more, as I simply put black heat shrink over them. There are and infinite number of other cable variations that you can build.
SolderPot_100pwx 50mm Solder Pot
Once you start building things you end up having to tin allot of wire ends, and a solder pot makes that much faster than using your soldering iron. You only need one of these per lab, and you could probably skip it if you are doing mostly breadboard work.
AligatorCables Alligator to Alligator Prototyping Cables 50cm $3.30/10pc
AtoBcables_100pxw Banana to Alligator Cable Pair Black & Red
A set for every voltmeter, for the times when you need hands-free use.
EpxoyApplicator_100pxw 50ML Epoxy Sealant Applicator Gun 1:1 and 2:1
There are a few different variants on the market and you have to match up all the parts of the system with your brand. This one works with Loctite.
Hysol Loctite Hysol 30-CL, Clr, 50mL, Cartridge
This stuff has proven to be a good potting compound after more than a year of marine water exposure at depth. Takes >24 hours to cure.
Nozzles Static Mixer Nozzle BT MA6.3-21-s
Don’t use the shorter nozzles with less than 20 elements, or the epoxy does not mix &  set properly.
ScotchMountingTape Scotch Permanent Mounting Tape, 1 x 450 Inches 5LB
This stuff is immensely useful when you are putting a prototype together, and you just need to mount your boards inside a housing. Always have a roll on hand.
LableMaker1 Deluxe Label Maker
A label maker is a vital piece of lab equipment. I go through 4-6 ribbons on my old old Brother P-touch setting up for each class. Not sure which one to recommend from the current crop, so you have to do your own homework there. But just get one.
screwdriverSet Multi-tip Precision Screwdriver Set
Get one with at least 30 bits. And it never hurts to have a few of the $1/6pc sets around too.
conformalcoating MG Silicone Conformal Coating : 422
The best way to protect Arduino boards & RTC modules from moisture.
openingpliers_100 5″ Opening Pliers
If you run into a situation where your heat shrink doesn’t quite fit over the item, these fix the situation.
DrillPress_100px WEN 4208 8-Inch 5 Speed Drill Press
You can use a hack saw for most small cuts, but sooner or later someone is going to need holes in something, and this Sears knock off is cheaper than many hand drills. I also use a bench top band saw quite often, but table top scroll saws are probably safer for classroom situations. And if you are handy with the soldering iron, you can often retrofit lithium batteries into portable hand tools after their original cells are shot. And it’s easy to remove the rust from any cheap tools you come across at a garage sale. 

Addendum 2016-09-15:

Finally have things set up for the next bunch of students, and since it’s unlikely to look this pretty again, I though I would post photos of the classroom set ready to go:

labstorage1    labstorage2

It all fits comfortably into these two cabinets, but we could probably get that down to just one if we had to.

This entry was posted in DIY Arduino Datalogger. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s